Hypertranscendental elements of a formal power-series ring of positive characteristic

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

hypertranscendental formal power series over fields of positive characteristic

let $k$ be a field of characteristic$p>0$, $k[[x]]$, the ring of formal power series over $ k$,$k((x))$, the quotient field of $ k[[x]]$, and $ k(x)$ the fieldof rational functions over $k$. we shall give somecharacterizations of an algebraic function $fin k((x))$ over $k$.let $l$ be a field of characteristic zero. the power series $finl[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

Automorphisms of Formal Power Series Rings over a Valuation Ring

The aim of this paper is to report on recent work on liftings of groups of au-tomorphisms of a formal power series ring over a eld k of characteristic p to characteristic 0, where they are realised as groups of automorphisms of a formal power series ring over a suitable valuation ring R dominating the Witt vectors W(k): We show that the lifting requirement for a group of automorphisms places se...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

ALGEBRAIC INDEPENDENCE OF CERTAIN FORMAL POWER SERIES (I)

We give a proof of the generalisation of Mendes-France and Van der Poorten's recent result over an arbitrary field of positive characteristic and then by extending a result of Carlitz, we shall introduce a class of algebraically independent series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nagoya Mathematical Journal

سال: 1992

ISSN: 0027-7630,2152-6842

DOI: 10.1017/s0027763000003913